Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Environ Monit Assess ; 196(4): 348, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446276

ABSTRACT

Environmental flow (e-flow) is the water demand of one given ecosystem, which can become the flow regulation target for protection and restoration of river or estuarine ecosystems. In this study, an e-flow assessment based on the flow-ecological health index (EHI) relation model was conducted to improve ecosystem health of the Yangtze River Estuary (YRE). Monitoring data of hydrology, biology, and water environment in the last decades were used for the model establishment. For the description of the YRE ecosystem, an EHI system was developed by cumulative frequency distribution curves and adaption of national standards. After preprocessing original flow values into proportional flow values, the generalized additive model and Monte Carlo random sampling were used for the establishment of the flow-EHI relation model. From the model calculation, the e-flow assessment results were that, in proportional flow values, the suitable flow range was 1.05-1.35, and the optimum flow range was 1.15-1.25 (flows in Yangtze River Datong Station). For flow regulation in two crucial periods, flows of 42,630-65,545 m3/s or over 14,675 m3/s are needed for the suitable flow of YRE in summer (June-August) or January, respectively. An adaptive management framework of ecological health-based estuarine e-flow assessment for YRE was contrived due to the limitation of current established model when facing the extreme drought in summer, 2022. The methodology and framework in this study are expected to provide valuable management and data support for the sustainable development of estuarine ecosystems and to bring inspiration for further studies at even continental or global levels.


Subject(s)
Ecosystem , Estuaries , Rivers , Environmental Monitoring , China , Water
2.
Mar Pollut Bull ; 198: 115845, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039570

ABSTRACT

This study investigated the contamination levels of five typical organotin compounds in Arctic and Antarctic marine sediments. Organotin total concentrations ranged from not detected (ND) to 37.9 ng Sn/g dw and from ND to 34.0 ng Sn/g dw in surface sediments of Svalbard and Fildes Peninsula, respectively. Dibutyltin accounted for 11.3 %-100 % of butyltins in Arctic sediments, whilst diphenyltin was the predominant phenyltin species in both Arctic and Antarctic. However, the concentrations of tributyltin and triphenyltin were lower than low-substituted organotins in the study areas, indicating the effectiveness of international ban on the use of triorganotin-based antifouling paints. No significant difference in organotin contamination was found between Arctic and Antarctic, although the time suffered from human interference was shorter in the Antarctic. Overall, these data can provide a diagnosis of recent organotin inputs in polar regions and serve as a baseline for future study assessing their local applications.


Subject(s)
Organotin Compounds , Water Pollutants, Chemical , Humans , Geologic Sediments , Antarctic Regions , Svalbard , Water Pollutants, Chemical/analysis , Environmental Monitoring
3.
Medicine (Baltimore) ; 102(42): e35370, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861562

ABSTRACT

To explore the impact of continuous care on chemotherapy patients with advanced colorectal cancer. Six hundred forty patients who received chemotherapy from June 2015 to December 2022 were included in this retrospective study and divided into the observation group (n = 332) and control group (n = 308) based on different care methods that they received. The observation group patients were followed up using the continuous care team model, the control group patients using the traditional telephone follow-up model. A comparative analysis was conducted on the effects of 2 modes on patients self-care ability, treatment compliance, anxiety, depression, communication ability with nurses, level of hope, as well as the effects of toxic side effects and cancer-related fatigue. The self-care ability and treatment compliance of patients in the observation group were significantly better than those in the control group (P < .05), with lower anxiety and depression scores, toxic side effects, and cancer-related fatigue compared to the control group (P < .05). The communication ability and patient hope level of nurses in the observation group were also significantly stronger than those in the control group (P < .05). The application of continuous care can improve patients self-care ability and treatment compliance, effectively reduce anxiety and depression in in patients with advanced colorectal cancer undergoing chemotherapy, and improve nurses communication skills and patients hope level. Therefore, this practice is worth promoting clinically.


Subject(s)
Colorectal Neoplasms , Drug-Related Side Effects and Adverse Reactions , Humans , Retrospective Studies , Colorectal Neoplasms/drug therapy , Anxiety/etiology , Anxiety/therapy , Fatigue/etiology , Fatigue/therapy
4.
Environ Sci Pollut Res Int ; 30(41): 93744-93759, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37516701

ABSTRACT

Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Animals , Humans , Polychlorinated Biphenyls/analysis , Poultry , Polychlorinated Dibenzodioxins/analysis , Persistent Organic Pollutants , Dibenzofurans , Halogenated Diphenyl Ethers/analysis , Birds , Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , China , Pesticides/analysis , Dibenzofurans, Polychlorinated
5.
Nurs Open ; 10(10): 6912-6922, 2023 10.
Article in English | MEDLINE | ID: mdl-37458186

ABSTRACT

AIMS: The aim of this study was to refine the Falling Risk Assessment Tool in Ophthalmology Inpatients (FRAT) and assess its psychometric properties. DESIGN: A cross-sectional design was used. METHODS: A convenience sample of 730 patients in the ophthalmology department was recruited in a level A tertiary hospital in Guangdong Province from July 2021 to January 2022. Data were analysed using item analysis, interrater reliability, content validation, internal consistency reliability and exploratory factor analysis. RESULTS: Five factors were extracted, accounting for 63.039% of the variance. The interrater reliability of the tool was 0.97. Cronbach's α was 0.658. The I-CVI was 0.75-1.00, the S-CVI/UA was 0.95 and the adjusted mean values of Kappa for indicators ranged from 0.72 to 1.00, as evaluated by the expert group. The FRAT showed satisfactory reliability and validity, and can be used to measure the fall risk assessment in ophthalmology inpatients. PATIENT OR PUBLIC CONTRIBUTION: After explaining the purpose, the patients received our fall risk assessment and answered the corresponding questionnaire questions.


Subject(s)
Inpatients , Ophthalmology , Humans , Psychometrics , Reproducibility of Results , Cross-Sectional Studies , Risk Assessment
6.
Environ Sci Pollut Res Int ; 30(27): 71194-71208, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37162675

ABSTRACT

Freshwater blooms of harmful cyanobacteria in drinking water source-oriented shallow lakes affect public health and ecosystem services worldwide. Therefore, identifying 2-methylisoborneol (2-MIB)-producing cyanobacteria and predicting the risks of 2-MIB are critical for managing 2-MIB-infected water sources. Previous studies on the potential producers and risks of 2-MIB have focused on reservoirs or have been limited by the ecosystems of phytoplankton-dominated areas. We investigated the producers, distribution, and occurrence of 2-MIB in East Taihu Lake-a drinking water source-oriented shallow lake with macrophyte- and phytoplankton-dominated areas-from August 2020 to November 2021. We observed that Pseudanabaena sp. produces 2-MIB in this lake, as determined by the maximum correlation coefficient (R = 0.71, p < 0.001), maximum detection rate, and minimum false positive/negative ratio exhibited by this genus. Extreme odor events occurred in this lake during late summer and early autumn in 2021, with the mean 2-MIB concentration increasing to 727 ± 426 ng/L and 369 ± 176 ng/L in August and September, respectively. Moreover, the macrophyte-dominated area, particularly the wetland area, exhibited a significant decrease (p < 0.01) in bloom intensity and 2-MIB production during these extreme odor events. Pseudanabaena sp. outbreak was likely owing to eutrophication, seasonal gradients, and macrophyte reduction, considering that temporal trends were consistent with high water temperature, high total phosphorus levels, and low-light conditions. Moreover, 2-MIB production was sensitive to short-term hydrometeorological processes, with high water levels and radiant intensity enhancing 2-MIB production. The risk assessment results showed that the probability of 2-MIB concentration exceeding the odor threshold (10 ng/L) is up to 90% when the cell density of Pseudanabaena sp. reaches 1.8 × 107 cell/L; this risk is reduced to 50 and 25% at densities of < 3.8 × 105 cell/L and 5.6 × 104 cell/L, respectively. Our findings support calls for shallow lake management efforts to maintain a macrophyte-dominated state and control odorous cyanobacteria growth.


Subject(s)
Cyanobacteria , Drinking Water , Drinking Water/microbiology , Lakes , Ecosystem , Phytoplankton , Eutrophication , Phosphorus/analysis , Risk Assessment , China
7.
J Environ Manage ; 342: 118154, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37207462

ABSTRACT

Macrophytes are of key importance to the structure and ecological services of shallow lakes and are sensitive to anthropogenic and natural perturbations. Ongoing eutrophication and hydrological regime change affect macrophytes through changes in water transparency and water level, which lead to a dramatic decrease in bottom light availability. Here an integrated dataset (2005-2021) of multiple environmental factors is used to demonstrate the driving forces and recovery potential of the macrophyte decline in East Taihu Lake by using a critical indicator, which is the ratio of the Secchi disk depth to the water depth (SD/WD). The macrophyte distribution area showed a remarkable decrease from 136.1 ± 9.7 km2 (2005-2014) to 66.1 ± 6.5 km2 (2015-2021). The macrophyte coverage in the lake and in the buffer zone decreased by 51.4% and 82.8%, respectively. The structural equation model and correlation analysis showed that the distribution and coverage of macrophytes decreased with the decrease in the SD/WD over time. Moreover, an extensive hydrological regime change, which caused a sharp decrease in SD and an increase in the water level, is likely to be the driving force that brought about the decline of macrophytes in this lake. The proposed recovery potential model shows that the SD/WD has been low in recent years (2015-2021), and that this SD/WD cannot ensure the growth of submerged macrophytes and is unlikely to ensure the growth of floating-leaved macrophytes, especially in the buffer zone. The approach developed in the present study provides a basis for the assessment of macrophyte recovery potential and the management of ecosystems in shallow lakes that suffer from macrophyte loss.


Subject(s)
Ecosystem , Lakes , Water , Eutrophication , China
8.
J Hazard Mater ; 442: 130052, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36182878

ABSTRACT

The off-flavor compound 2-methylisoborneol (2-MIB) is generally associated with the proliferation and metabolism of filamentous cyanobacteria in shallow freshwater ecosystems. Here field monitoring in East Taihu Lake from July to October 2021, along with cultural experiments, was conducted to determine the impact of submerged macrophytes on the growth and 2-MIB production of filamentous cyanobacteria. Pseudanabaena sp. was identified as the 2-MIB producer with the highest detection rate (100%) and correlation coefficient (R=0.68, p < 0.001). The 2-MIB concentration and algal growth in the macrophyte-dominated zones were markedly decreased compared with those in the phytoplankton-dominated zone. Five submerged macrophytes classified into flat-leaf type (Vallisneria natans and Potamogeton crispus) and thin-leaf type (Hydrilla verticillata, Ceratophyllum demersum, and Myriophyllum spicatum) exhibited strong inhibition effects against Pseudanabaena sp.: Overall inhibition efficiencies (IEs) of 92.7% ± 6.8% and 92.7% ± 8.4% for cell growth and 2-MIB production were achieved, respectively. Moreover, the thin-leaf macrophytes exhibited significant higher IEs for cell growth (94.0% vs. 84.7%) and 2-MIB production (99.4% vs. 82.6%) than the flat-leaf macrophytes and can be selected as pioneer species in controlling odor problems. Nutrient uptake, increasing water clarity, shading effects, and allelopathic effects of the submerged macrophytes were found to be the dominant inhibition mechanisms.


Subject(s)
Cyanobacteria , Hydrocharitaceae , Ecosystem , Hydrocharitaceae/metabolism , Lakes , Water
9.
Mar Pollut Bull ; 184: 114116, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152495

ABSTRACT

Due to the distinct environment condition and geographic location, Svalbard has been recognized as a potential pollution reservoir in the Arctic. In this study, 8 surface sediment samples were collected from two fjords in Svalbard (Kongsfjorden and Rijpfjorden) in 2017, and they were searched for microplastics and polycyclic aromatic hydrocarbons (PAHs). PAHs were also investigated in 10 soil samples of Ny-Ålesund for local anthropogenic source analysis. The level of microplastics and other anthropogenic particles ranged from not detected (ND) to 4.936 particles/kg dry weight (DW). Fiber was the only shape of the microplastics found and three polymers (polyester, rayon and cellulose) were detected, which suggested that fisheries-related debris and textile materials were possible sources of microplastics and anthropogenic particles. For PAHs, the level of ∑26PAH was 9.2 ng/g to 67.1 ng/g (DW), and were dominated by lnP and BghiP, indicating petroleum combustion source. Further analysis revealed that traffic emissions from cars and diesel combustion from a local power plant were major sources of PAHs in soils of Ny-Alesund, while traffic emissions from ships were the dominate source of PAHs in sediments of Kongsfjorden and Rijpfjorden. A higher level of PAHs was observed in Ny-Alesund, confirming an anthropogenic input, while transport via ocean currents might contribute to the higher abundance of microplastics in Rijpfjorden. Further research and even long-term observation of pollutants are needed to fully understand the pollution status in polar regions.


Subject(s)
Environmental Pollutants , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Microplastics , Plastics , Environmental Monitoring , Svalbard , Petroleum/analysis , Environmental Pollutants/analysis , Soil , Cellulose , Polyesters , Geologic Sediments , Water Pollutants, Chemical/analysis , China
10.
Environ Sci Pollut Res Int ; 29(40): 61222-61235, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35438400

ABSTRACT

To explore the occurrence, source, and risk of 16 priority polycyclic aromatic hydrocarbons (PAHs) in urban source water at the tidal reach of the Yangtze River, eighty-nine surface water samples were collected in 8 field campaigns from July 2018 to November 2019. Fifteen of 16 PAHs except for dibenz(a,h)anthracene (DBA) were found in the water. Detection frequencies were observed between 53 and 72% for PAHs with 4 rings, while most of other PAHs were less detected, e.g., benzo(a)pyrene (BaP) in 31% of samples. The total concentrations of 16 priority PAHs reached up to 2.8 µg·L-1 and increased during the tidal transitions from flood to ebb. The average concentrations of PAHs in ebb tides were higher than those in flood tides. PAH concentrations and compositions showed great variation with different sampling campaigns, and higher levels and more components were observed in the rainy months and cold months. Those priority PAHs in the tidal water source are mainly from combustion activities (especially fossil fuel combustion), but the contribution from oil spills/leakage is also important in rainy months. High-molecular-weight PAHs in this tidal water source may pose risks to aquatic life, while they pose no carcinogenic risk to human health via ingestion of drinking water.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Environmental Monitoring , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Rivers , Water , Water Pollutants, Chemical/analysis
11.
Mar Pollut Bull ; 178: 113600, 2022 May.
Article in English | MEDLINE | ID: mdl-35349865

ABSTRACT

This study investigated the concentration fluctuation of organotin compounds in the Turbidity Maximum Zone (TMZ) of the Yangtze Estuary within a tidal cycle. Organotin concentrations varied greatly during the tidal cycle with dissolved organotins ranged from 39 to 682 ng Sn·L-1 and 40-1588 ng Sn·L-1, and particulate organotins ranged from 59 to 467 ng Sn·g-1 dw and 21-429 ng Sn·g-1 dw in TMZ water close to Hengsha Island and Jiuduansha Island, respectively. Meanwhile, the maximum levels of organotins appeared at each period of tidal transition, suggesting the tidal-driven pulsed exposure of organotins was prevalent in the estuaries. Besides, the organic carbon-normalized partition coefficients (Koc) of tri-organotins between suspended particulate matter (SPM) and aqueous phase were correlated with the phase distribution of natural organic matter (NOM). The dissolved tri-organotins were also associated with the properties of dissolved organic carbon (DOC) including aromaticity, hydrophobicity, and chromophoricity. Hence, pulsed exposure on organotins in the TMZ are highly dictated by the dynamic environmental conditions (i.e., SPM and NOM) with the tidal currents, which could further provide information to assess organotin ecological risks accurately in estuaries.


Subject(s)
Organotin Compounds , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Particulate Matter , Water , Water Pollutants, Chemical/analysis
12.
Environ Sci Pollut Res Int ; 29(37): 56525-56534, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35347606

ABSTRACT

Microplastic contamination is an emerging issue in the marine environment including the Arctic. However, the occurrence of microplastics in the Arctic fjords remains less understood. Sample collections were conducted by trawling horizontally in surface water (0-0.4-m depth) and trawling vertically in the water column (0-200-m depth) to investigate the abundance, composition, and distribution of microplastics in the Rijpfjorden, Northern Svalbard, in the summer of 2017. Laser Direct Infrared chemical imaging technique was applied for the counting and identification of microplastic particles. A total of 1010 microplastic particles and 14 mesoplastics were identified from 41,038 particles in eight samples from the Rijpfjorden. The abundance of microplastics larger than 300 µm was 0.15 ± 0.19 n/m3 in surface water, and 0.15 ± 0.03 n/m3 in the water column of the Rijpfjorden. The microplastic particles identified in Rijpfjorden water consisted of 10 types of polymers. The dominant microplastics are polyurethane, polyethylene, polyvinyl acetate, polystyrene, polypropylene, and alkyd varnish. Historical ship activities and newly melted sea ice might be major sources of microplastics in the seawater of Rijpfjorden. In general, contamination of microplastics larger than 300 µm in Rijpfjorden water is at a low level in comparison to other polar waters. Further research is needed to confirm the origin and fate of microplastics below 300 µm in Arctic fjords.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Plastics/chemistry , Svalbard , Water , Water Pollutants, Chemical/analysis
13.
Sci Total Environ ; 816: 151598, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774944

ABSTRACT

Organic components of microplastic leachates were investigated in an integrated non-targeted analysis study that included statistical analysis on leachates generated under different leaching scenarios. Leaching experiments were undertaken with simulated gastric fluid (SGF), river water, and seawater with common polymer types, including polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polyester fabrics comprising both raw and recycled materials. Totals of 111.0 ± 26.7, 98.5 ± 20.3, and 53.5 ± 4.7 different features were tentatively identified as compounds in SGF, freshwater, and seawater leachates, respectively, of which 5 compounds were confirmed by reference standards. The leaching capacities of the media were compared, and the clusters of structurally related features leached in the same medium were studied. For leachates generated from raw and recycled plastics, volcano plots and Pearson's Chi-squared tests were used to identify characteristic features. More characteristic features (3-20) had an average intensity across all recycled plastics that were significantly higher (p < 0.05) than that (1-3) of raw plastics under different conditions. The results indicate that gastric solution is more likely to leach components from microplastics, and there exists the difference of leachate's organic composition between raw and recycled materials, providing new insights into understanding microplastic environmental effects.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Polyethylene , Seawater , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 808: 152199, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34890676

ABSTRACT

Bottom light availability (BLA), represented by the ratio of the Secchi disk depth to water depth (SD/WD), plays a fundamental role in the growth and reproduction of submerged macrophytes. However, studies thus far have mainly explored the interactions between macrophyte responses and BLA through field investigations; this means that knowledge of such responses to various underwater light conditions in mesocosm experiments is rudimentary at best. We hypothesized that the growth and clonal reproduction of submerged macrophytes decrease with decreasing BLA and collapse beyond a critical threshold. Here we performed a 42-day outdoor mesocosm experiment with a species of perennial submerged macrophyte, Vallisneria natans, along a decreasing SD/WD gradient. Over this gradient, the primary morphological traits (plant height, root length, plant biomass), relative growth rate, and shoot increment rate of V. natans exhibited a significant trend of initial increase followed by a decrease. The photoinhibition occurred at high and low-light stress, indicating that an intermediate SD/WD (0.55-0.65) provides optimal growth conditions. The number of ramets, ramet biomass, ramet/total biomass ratio, and root/shoot ratio all decreased with decreasing SD/WD ratio, suggesting that V. natans allocates more resources for clonal reproduction and population stability rather than increased shoot biomass at higher BLA conditions. The results of principal component analysis and threshold detection indicated that the growth traits of V. natans had a higher SD/WD tipping point value (0.55 vs. 0.50) than the reproductive capacity and stability, indicating that only values of SD/WD ≥ 0.55 ensured the growth and the vegetative reproduction of V. natans. Additionally, an inverted U-shaped relationship between growth traits and a linear relationship between reproduction and stability reflect the resource allocation strategies and resilience of V. natans to decreasing underwater light conditions.


Subject(s)
Hydrocharitaceae , Water , Biomass , Lakes
15.
J Environ Manage ; 305: 114346, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34952393

ABSTRACT

Organophosphorus pesticides (OPPs) are among the most commonly used pesticides worldwide. However, these compounds pose a serious threat to aquatic environments. Here, thirty-seven pesticides and eight degradation products were determined in surface water samples from Tai Lake, East China, using a high-volume solid phase extraction technique (Hi-throat/Hi-volume SPE). Surface water was pumped in-situ through a portable sampler, and OPPs in the water retained on the Hi-volume SPE adsorption column, finally extracted for analysis. This technique efficiently reduced the detection limits to below 0.3 ng/L. In total, 40 out of 45 OPP congeners were detected, which far exceeded the amount of OPPs in previous studies. The total concentration of OPPs ranged between 101.4 and 1530 ng/L (median: 378.9 ng/L). Parathion exhibited the highest concentration (median: 112.0 ng/L), followed by paraoxon-methyl (median: 90.3 ng/L), as well as carbophenothion, fenthion, and mevinphos. Agricultural areas were more polluted than residential and industrial regions. However, degradation products persisted in residential and industrial waters. The ecological risks of OPPs in these areas were estimated based on the risk quotient index (RQ). Parathion, fenthion, carbophenothion, and tolclofos-methyl occurred at high-risk levels, and the levels of degradation products were also non-trivial. Our findings thus indicated that OPP degradation products pose a potential threat to natural environments and should therefore be closely monitored.


Subject(s)
Pesticides , Water Pollutants, Chemical , China , Environmental Monitoring , Lakes , Organophosphorus Compounds , Pesticides/analysis , Pharynx/chemistry , Water , Water Pollutants, Chemical/analysis
16.
Bioorg Med Chem Lett ; 47: 128230, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34186178

ABSTRACT

A series of novel ligustrazine-chalcone hybrids were synthesized and evaluated for their in vitro and in vivo antitumor activities. The results showed that most of these compounds exhibited significant in vitro cytotoxicity against MDA-MB-231, MCF-7, A549 and HepG2 cell lines with IC50 values as low as sub-micromole. Among them, compounds 6c and 6f possessed better comprehensive characteristics for the antiproliferation effects on both MDA-MB-231 (IC50: 6c, 1.60 ± 0.21 µM; 6f, 1.67 ± 1.25 µM) and MCF-7 (IC50: 6c, 1.41 ± 0.23 µM; 6f, 1.54 ± 0.30 µM). They also exhibited the potent colony-formation inhibitory abilities on above two cell lines in both concentration and time dependent manners, as well as the significantly suppression capabilities against the migration of such cell lines in a concentration dependent manner by wound-healing assay. Of note, compound 6c could significantly induce the apoptosis of MDA-MB-231 cells in a concentration dependent manner and inhibited the transformation of the growth cycle of MDA-MB-231 cells and blocked the cell growth cycle in G0/G1 phase. Moreover, the in vivo antiproliferation assay of compound 6c on TNBC model indicated such compound had a remarkable potency against tumor growth with a widely safety window. Further immunohistochemistry analysis illustrated that compound 6c was provided with a potent capacity to significantly reduce the Ki-67 positive rate in a dose dependent manner. All the results suggested that these hybrids presented both in vitro and in vivo proliferation inhibition potency against breast cancer and further development with good therapeutic potential should be of great interest.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcone/pharmacology , Pyrazines/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Pyrazines/chemistry , Structure-Activity Relationship , Triple Negative Breast Neoplasms/pathology
17.
Environ Sci Technol ; 54(14): 8900-8908, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32643373

ABSTRACT

Scarce attention has been paid to the immunotoxicity of organophosphate flame retardants (PFRs), which poses a challenge to the systematic assessment of their health risks. In this study, a battery of in vitro immunotoxicity screening assays, including adhesion, phagocytosis, and 48 cytokine/chemokine production, was measured after exposing THP-1-derived macrophages to six selected common PFRs (TPHP, TDCPP, TNBP, TOCP, TCEP, and TBOEP) at a noncytotoxic concentration (≤50 µM). Our results showed that TPHP and TBOEP partially attenuated the adhesion and phagocytosis of the THP-1 mφs and that TDCPP caused a functional loss of phagocytosis, implying the potential immunosuppression. In contrast, TNBP and TOCP may cause an immunostimulation by significantly promoting cell adhesion and enhancing phagocytic efficiency. Additionally, the results from a cytokine/chemokine secretion analysis revealed the proinflammatory properties of TDCPP, TPHP, and TBOEP. TOCP was thought to disrupt the inflammatory balance by inhibiting both proinflammatory and antiinflammatory cytokines. TCEP showed no effect on adhesion or phagocytosis and little modulation of cytokine release at this experimental concentration. Overall, this study supports that PFRs can be immunotoxic to macrophages in different ways and provides evidence for developing more sensitive in vitro immunotoxicity bioassay methods.


Subject(s)
Flame Retardants , Flame Retardants/toxicity , Humans , Macrophages , Organophosphates/toxicity , Organophosphorus Compounds , Phagocytosis
18.
Environ Pollut ; 264: 114792, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32434112

ABSTRACT

Organophosphorus flame retardants (PFRs) are contaminants of emerging concern which have been detected globally. However, little information on PFRs in the Arctic freshwater environment is currently available. In this study, both hydrophilic and hydrophobic PFRs in the water and sediment of four areas (town, surroundings, coastal marine water, and glacier melt runoff) near Ny-Ålesund Svalbard were investigated by time-integrated passive sampling (water) and grab sampling (sediment). Seven kinds of PFRs were found in the Arctic waters with individual freely dissolved concentrations from 0.007 ng L-1 to 355 ng L-1, and the concentrations of chlorinated PFRs were 3-4 orders of magnitude higher than those of non-chlorinated PFRs. The distribution of different PFRs in freshwater showed significant spatial differences among the different areas, and the town was found to have most kinds of PFRs and highest PFRs concentrations. The sources and transport of different kinds of PFRs were explored based on a spatial overlay analysis of the contaminant distributions, environmental conditions, and PFR applications. As a result, human settlements, industrial activities, atmospheric deposition, and transportation in Ny-Ålesund were proposed to be related to the pollution of different PFRs at Ny-Ålesund. The PFRs in the inshore marine water were found to be affected by both local ship contamination and ocean current transport. Furthermore, nine PFRs were detected in the sediments of Ny-Ålesund. Accumulation of different PFRs in the Arctic sediment was found to be dominated by their physico-chemical properties (polarity).


Subject(s)
Flame Retardants/analysis , Arctic Regions , Environmental Monitoring , Fresh Water , Humans , Svalbard
19.
Environ Sci Technol ; 53(18): 10741-10752, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31403792

ABSTRACT

Photochemical weathering leads to degradation of microplastics and releases chemical additives, polymeric fragments, and/or byproducts. This study evaluated the release kinetics of organotin compounds (OTCs) from three different sized (10-300 µm) polyvinyl chloride (PVC) microplastics under UV- and visible light irradiation. Four OTCs, dimethyltin (DMT), monomethyltin (MMT), dibutyltin (DBT), and monobutyltin (MBT), were found to release from PVC particles after 24 h leaching in darkness ranging from 2 to 20 µg·g-PVC-1. Under UV/visible light irradiation, only DMT and DBT were detectable, whereas MMT and MBT were not detected due to rapid photodegradation. The total tin concentrations (including organic and inorganic tins) in the aqueous phase monotonically increased under light exposure. By contrast, they reached plateaus after 24 h in darkness, confirming the photodegradation of OTCs. A release kinetics model was established and correctly interpreted the microplastics size effect on the OTC release process. Finally, the impacts of salinity and dissolved organic matter (DOM) were investigated. The release and photodegradation of OTCs were both inhibited at high salinity conditions, probably due to the enhanced readsorption of OTCs on PVC microplastics and the formation of halogen radicals that were less reactive toward neutral OTCs. The presence of DOM, however, increased OTCs release probably because the excited state triplet DOM (3DOM*) formed and reacted with OTCs from PVC microplastics.


Subject(s)
Organotin Compounds , Water Pollutants, Chemical , Photolysis , Plastics , Polyvinyl Chloride , Salinity , Water
20.
Chemosphere ; 236: 124327, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31319314

ABSTRACT

The egg samples of four heron species, including black-crowned night heron (Nycticorax nycticorax), little egret (Egretta garzetta), Chinese pond heron (Ardeola bacchus) and cattle egret (Bubulcus ibis), were collected from the upper Yangtze River (Changjiang) Basin, Southwest China in early summer of 2017. Nine out of ten target organophosphate flame retardants (PFRs) were detected in these heron egg samples. The sum of concentrations of the PFRs quantified (∑PFRs) ranged from 63 to 590 pmol g-1 ww (18-185 ng g-1 ww) with a median value of 139 pmol g-1 ww (48 ng g-1 ww) among all samples. The median ∑PFRs in eggs of night herons (160 pmol g-1 ww) was higher than Chinese pond herons (median 121 pmol g-1 ww) and little egrets (median 109 pmol g-1 ww). In heron eggs, ∑PFRs were mainly contributed by tri-n-butyl phosphate (TNBP), tris (isobutyl) phosphate (TIBP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tri-2-methylphenyl phosphate (TMPP). Alkyl-PFRs accounted for approximately 28%-85% (median 57%) of the nine PFRs quantified while the rest is contributed by aryl-PFRs and chlorinated PFRs. Lower levels of PFRs in little egret eggs were found upstream than downstream of the Yangtze. In addition, the daily intakes of PFRs through ingestion of heron eggs were estimated at lower levels.


Subject(s)
Eggs/analysis , Flame Retardants/analysis , Organophosphates/chemistry , Animals , Birds , China
SELECTION OF CITATIONS
SEARCH DETAIL
...